A Purely Algebraic Proof of the Fundamental Theorem of Algebra
Abstract
Keywords
References
Artin, E., Schreier, O.: 2007, Algebraische Konstruktion reeller Körper, Abhandlungen aus dem Mathematischen Seminar der Hamburgischen Universität 5 (1926), 85–99; The algebraic construction of real fields, in: M. Rosen (ed.), Exposition by Emil Artin, AMS-LMS, 107–118.
Bair, J., et al.: 2013, Is mathematical history written by the victors?, Notices of The American Mathematical Society 7, 886–904.
Błaszczyk, P.: 2007, Analiza filozoficzna rozprawy Richarda Dedekinda Stetigkeit und irrationale Zahlen, Wydawnictwo Naukowe AP w Krakowie, Kraków.
Birkhoff, G., Mac Lane, S.: 1977, A Survey of Modern Algebra, Macmillan Publishing, New York.
Bolzano, B.: 2004, Purely analytic proof of the theorem that between any two values which give results of opposite signs, there lies at least one real root of the equation, in: S. Russ (ed.), The Mathematical Works of Bernard Bolzano, Oxford University Press, Oxford, 251–263.
Cantor, G.: 1895, Beiträge zur Begründung der transfiniten Mengenlehre, Mathematische Annalen 46, 481–512.
Cohen, L. W., Ehrlich, G.: 1963, The Structure of the Real Number System, Van Nostrand Co., Princeton, New Jersey.
Cohen, P. M.: 1991, Algebra, Vol. III, John Wiley & Sons, Chichester.
Dedekind, R.: 1872, Stetigkeit und irrationale Zahlen, Friedr. Vieweg & Sohn, Braunschweig.
Derksen, H.: 2003, The fundamental theorem of algebra and linear algebra, The American Mathematical Monthly 11, 620–623.
Fine, B., Rosenberger, B.: 1997, The Fundamental Theorem of Algebra, Springer, New York.
Goldblatt, R.: 1998, Lectures on the Hyperreals, Springer, New York.
Hall, J. F.: 2011, Completeness of ordered fields, http://arxiv.org/abs/1101.5652v1.
Jacobson, N.: 1975, Lectures in Abstract Algebra, Vol. III, Van Nostrand Co., Princeton, New Jersey.
Kuratowski, K., Mostowski, A.: 1966, Set Theory, North-Holland, PWN, Amsterdam, Warsaw.
Libman, G.: 2006, A Nonstandard Proof of the Fundamental Theorem of Algebra, The American Mathematical Monthly 4, 347–348.
Maor, E.: 2007, The Pythagorean Theorem: A 4,000-Year History, Princeton University Press, Princeton, New Jersey.
Marker, D.: 2002, Model Theory. An introduction, Springer, New York.
Łoś, J.: 1955, Quelques remarques, théorèmes et problèmes sur les classes définissables d’algèbres, in: T. Skolem et al. (ed.), Mathematical interpretation of formal systems, North-Holland, Amsterdam, 98–113.
Remmert, R.: 1995, The Fundamental Theorem of Algebra, in: H. D. Ebbinghaus et al. (ed.), Numbers, Springer, New York, 97–122.
Riemenschneider, O.: 2001, 37 elementare axiomatische Charakterisierungen des reellen Zahlkörpers, Mittelungen der Mathematischen Gesellschaft in Hamburg 20, 71–95.
Teismann, H.: 2013, Toward a More Complete List of Completeness Axioms, The American Mathematical Monthly 2, 99–114.
The Bibliography for the Fundamental Theorem of Algebra.: http://mathfaculty.fullerton.edu/mathews/c2003/FunTheoremAlgebraBib/ Links/FunTheoremAlgebraBib_lnk_3.html.
Zassenhaus, H.: 1967, On the Fundamental Theorem of Algebra, The American Mathematical Monthly 74, 485–497.
e-ISSN: 2450-341X, ISSN: 2080-9751
AUPC SDMP is on the List of the Ministry’s scored journals (part B) with 5 points for 2016